
/ L - 7 3 Y 4 c
' w .

N09= 1 6 2 9 9

Analysis and Specification Tools in Rela t ion to the APSE

John W. Hendricks

Sys tems Technology, Inc.

Ada and t h e Ada Programming Support Environment (APSE) specifically address t h e

phases of t h e sys tem/sof tware l ifecycle which follow a f t e r the user's problem has

been t rans la ted in to system and sof tware development specifications. The

"waterfall" model of the l ifecycle identifies t he analysis and requi rements definition

phases (now known as the concept exploration and t h e demonstration ti validation

phases in the l ifecycle as described in the new DOD-STD-2167) a s preceeding

program design and coding.

Since Ada IS a prograrnming language and the APSE is a prce;ramming support

environment, they a r e primarily ta rge ted to support program (code) development,

B.4.2.1

t es t ing , maintenance, etc. T h e use of Ada based or Ada r e l a t e d specif icat ion

languages (SLs) and program design ianguages (PDLs) c a n ex tend t h e use of Ada back

i n t o t h e s o f t w a r e design phases of t h e l i fe cyc le (for example, see Goldsack).

However, t h e r e s e e m s to b e s o m e agreement t h a t Ada is no t appropr ia te as a language

for deal ing with t h e "problem space" and t h e ear l ies t phases of t h e l i fecycle (Brodie,

Mylopoulos, and Schmidt, p.4 10; Booch,p. 359).

T h e Ada Programming Support Environment (APSE), and indeed t h e Ada language

i tself , was defined as a response to t h e "software crisis" in DOD embedded systems.

Booch (p.7-8) l i s t s a number of symptoms of this situation, including:

o Responsiveness. Computer-based sys tems of ten do not m e e t user
needs.

o Modifiability. Software maintenance is complex, costly, and er ror
prone.

In par t icular , sof tware maintenance is identified as being responsible for between

40% and 70% of the to ta l hardware and sof tware expendi tures f o r these systems. W e

c a n e x p e c t t h a t many of the systems for t h e NASA space s ta t ion will s h a r e impor tan t

charac te r i s t ics with t h e DOD embedded sys tems (e+, complexity, long-lifetime,

changing requirements , real-t ime inter-iaces), and they should be subject to many of

these s a m e problems.

The world's best programming ef i o r t cap not produce a system which is responsive to

t h e user's needs i f the requirements upcn which i t depends d o not descr ibe a n

appropr ia te solution t o t h e user's problem or i f the requirements a r e in a form which

0.4.2.2

we have great d i f f icu l ty t ranslat ing i n t o an implementable design. Also, if this

problem exists with t h e original requirements for a system, it c a n be r e p e a t e d e v e r y

t ime there i s a change in t h e problem. W e do not have d a t a which c h a r a c t e r i z e t h e

distribution of software maintenance costs be tween "bug fixes" and changes in

requirements, but it would not be surprising if a la rge par t of t h e "maintenance" costs

are caused by evolution of t h e requirements, especially for sys tems which a r e in

serv ice for a number of years. Therefore, both the responsiveness problems and a

large part of t h e maintainabili ty problems which charac te r ize the sof tware crisis may

be beyond t h e reach of Ada and t h e APSE, unless faci l i t ies to deal with t h e processes

of concept exploration and demonstrat ion & validation can smoothly be linked in to the

APSE.

There are a number of developments which demonst ra te t h e feasibil i ty and

desirabil i ty of formalizing specifications or a rch i tec ture designs at higher levels of

abstract ion than t h a t provided by a programming language (e.g., Ralzer; Zave). These

e f f o r t s share an object ive of reaching out toward t h e "problem space" w i t h a

representat ion which is much easier to use than a programming language for

describing the requirements, but is still capable of being t ranslated or t ransformed

in to compilable code with l imited manual intervention (au tomat ic prograrnming).

They also share a commitment to extensive use of computer based tools to suppart t h e

processes of analysis, specification and design. To the degree t h a t these approaches

succeed, they can address t h e problems of responsiveness t o init ial user needs and

main tenance of responsiveness as these needs change over the l i fe t ime of t h e sys tem.

It is unlikely t h a t any of these e f f o r t s will e l imina te t h e need for substant ia l a m o u n t s

of human programming in the development of the la rge and complex sys tems for

8.4.2.3

QRlGlPIAL PAGE tS
OF M W L l N

which Ada and t h e APSE are designed. If these new techniques a r e to be

explo i ted for major pro jec ts such as t h e N/,SA space stat ion, they must be capable of

being used in conjunction with program design and development under t h e APSE.

O n e of t h e m o s t promising of these new systems is Process Archi tec ture Design

Technology (PADtech). Sys tems Technology is working with t h e developers of this

sys tem, Associative Design Technology, Ltd (USA), to introduce and support

this new technology for aerospace and mili tary applications. An overview of PADtech

and s o m e of t h e issues raised by its use with t h e APSE should suggest both t h e promise

of t h e s e new sys tems and some of t h e issues to be considered in "integrating" these

new tools i n t o major projects which will be using t h e APSE.

PADtech includes both a methodology and a set of computer based tools t o support t h e

use of t h e methodology in c rea t ing an a rch i tec ture design for a complex system. The

methodology provides a representat ion to formally describe:

o t h e s t ruc ture of processes which we expec t t h e sys tem to
implement , t h e events which will cause each process to be executed ,
and t h e e v e n t s which each process c a n cause to occur; and

o t h e conceptual s t ruc ture of the en t i t i es involved in t h e processes in
t e r m s of the role relation hips between the concepts , object types
and objects.

This representat ion (Process Archi tecture Design specification Language or PADL)

descr ibes processes which may be implemented by hardware, or by persons following

procedures , as well 3s by software. However, PADL has a precise semant ics which

enables i t to be t ransformed in to executab le forms, ;rid this inevitabil i ty makes i t s

R.4.2.4

application a more demanding process. By way of contrast , Coldsack (p.11) noted t h a t

"...the ease of use of PSL, SAD" and many others, is partially due to the absence of a

precise ... seman tics."

The computer based tools for t he application of PADtech include the following:

A design workbench which provides a high performance, c o b , icon
driven, interact ive graphics interface fo r t h e cre.:tion and
manipulation of the graphical form of the Proczs3 Archi tecture
Design specification Language. The design workbench supports t he
system archi tec t in the evolutionary process of analysis,
specification and design. I t also provides support for interactions
with problem a rea experts and with program designers 2nd
programmers.

Modules which translate between the graphical form and t h e textual
form of the Process Architecture Design specification LanguagL;

A da ta manager which provides bookkeeping support for the
evolving process archi tecture design;

A facility for building up a customized set of icons, process models,
etc. which a r e appropriate for specific problem areas.

An interpreter for simulated execution of the process archi tecture
for an early prototyping, i terat ive design cycle.

A "monitor" which collects the results of the interprc ; i ?xecuti\, (.

A "debug" environment for controlling and examining t h e results of
interpretive execution.

Code generation faci l i t ies for transf orining Process Architecture
Design specification Language descriptions for process and
conceptual s t ructures into the implementation languages, Ada and
SQL.

B.4.2.5

P A D t e c h is designed to be applicable to t h e analysis, specif icat ion and design process

at several d i f fe ren t levels. First, i t can be used at t h e s t r a t e g i c planning level. For

example, one can build a process architecture to represent an e n t i r e organizat ion or a

major project , and use this "enterprise modeP to ident i fy and specify a u t o m a t e d

information and communication sys tems to support operat ion of t h e e n t i r e enterpr ise .

Second, PADtech c a n be used at t h e system or integrat ion a r c h i t e c t u r e level f o r a

s p e c i f i c system. I t can be used to design the a r c h i t e c t u r e which def ines t h e overall

structure f o r a comple te system, or to design and implement a da tabase and

communicat ion "substrate" to in tegra te many separa te ly developed modules,

including man- and hardware-in-the-loop elements . Third, PADtech c a n b e used t o

specify, design and implement (by code generation) sys tems which c a n readily be

c h a r a c t e r i z e d by "object processing" processes, i.e., processes which c r e a t e and

change t h e state of both abs t rac t and "real" objects.

PADtech will be most beneficial when applied to sys tems with some of t h e following

character is t ics :

o Requirements which a r e complex, not completely understood, and
a r e expec ted t o evolve over the life of t h e system,

o Requirements for very high speed execution involving parallel
and/or distributed execut ion,

o Requirements for real- t ime rcsponsiveness,

0 A requirement for high speed management of complex. in te rac t ive
d a t a bases and cornmunicatior? s t ruc tures ,

0 Integration of a large number of processes while maintaining
protection against ca tas t rophic failures.

R.4.2.6

W e expect t h a t there will b e a number of space station sys tems with these

character is t ics , and t h a t PADtech and o t h e r innovative tools for analysis,

specif icat ion and design will b e required to make these sys tems responsive t o the

requirements and maintainable over a long l ifetime.

What a r e s o m e of t h e issues raised by the use of these tools with Ada and the APSE?

Firs t , tools which a r e geared to crea t ing a problein space or iented, executab le

specif icat ion or design specif icat ion tend to c u t across the phases of the lifecycle as

defined in t h e waterfal l model. These tools gain much of their uti l i ty f rom an

i t e r a t i v e cyc le of analysis, execut ion and evaluat ion of the specif icat ion as a

"prototype," re-analysis, e tc . They emphasize d i rec t involvement of t h e users or

problem area e x p e r t s in evaluat ing t h e implications of a design specif icat ion as they

a r e revealed by repea ted prototyping. The analysis and prototyping processes a r c

supported by an in te rac t ive environment which is heavily dependent on "prototype

execution" and graphics for presentat ion and manipulation. Also, these new

techniques push formalization back toward the problem specif icat ion and use

(pdrtially) autoindted t ransformation to genera te code modules. This allows

maintenance which is occasioned by changes in t h e requirements , to be perlorrned on

t h e speci[ication/design rather than on t h e code. Then, t h e revised specification is

transfortned into updated code modules. (Jse of these new techniqttes will be mdde

inore difficult i f a rigid segmentat ion in to the phases of a waterfal l lifecycle model I S

imposed by procurement processes or by implementat ions of the APSE.

Second, t h e r e a r e several reasons why specification and design tools should be linked

i n t o the APSE. Most important ly , if design specif icat ions such as those in PADL a r e

t o be used f o r main tenance and a r e to become a par t of t h e permanent documentat ion

0.4.2.7

of a systcrn, i t is impor tan t to have control over their versions as o n e does f o r c o d e

modules. Also, in sp i te of cveryone's tendency to claim t h a t his sys tem is c o m p l e t e

a n d u n h e r s d , none we. AJl of t h e analysis, specif icat ion and design tools would

benefi t f rom being ab le to i n t e r f a c e with o ther sys tems which could complement the i r

own capabi l i t ies (for example, see Ripken). An "open" APSE could coord ina te

be tween severa1"outside" tools, as well as between these tools and code development

under t h e APSE.

Third, t h e amount of e f f o r t being put into the development of Ada and t h e APSE

create5 a certain mmentum towards making them all inclusive. If Ada is the

programming language, why not use i t as the basis for a design language, a

specif icat ion language, a conceptual design language, etc., and mandate their use? I f

t h e APSE is to control the programming process, why not mandate t h a t only tools

which a r e fully integrated in to the APSE c a n be used f r o m concept exploration

onwards? The potential benefi ts of such a coherent , s tar t - to-f inish development

environment need to be balanced against t he potent ia l costs of using much less than

opt imal tools in the pre-programming phases of t h e l ifecycle.

A detailed examination of these issues would be a major project and is n o t

contempla ted here . However , we will suggest t h a t in applying Ada, t h e APSE and

s tandards s u c h as 2167, we should be careful not to let their application expand to a

point where they stifle innovation. The continuing revolution in microelectronics is

providing an opportunity to c r e a t e sys tems to solve increasingly complex problems;

new techniques for specification and design will also be needed to exploit this

opportunity. which will b e needed to build t h e

increasingly complex sys tems we require, will not b e developed exclusively for use by

Many of these new techniques,

8.4.2.8

one industry or one language. Retaining the option to se lec t different methodologies

for problems which have differing characteristics may be the only e f fec t ive approach

at this time.

c

Recall that the standardization of the APSE as a programming support environment is

only now happening af te r many years of evolutionary experience with diverse se t s of

programming support tools. Restricting consideration to one, or even a few chosen

specification and design tools, could be a real mistake for an organization or a major

project such as the space station, which will need to deal with an increasingly complex

level of system problems. To require tha t everything be Ada-like, be implemented in

Ada, run directly under the APSE, and f i t into a rigid waterfall model of the lifecycle

would turn a promising support environment into a straight jacket for progress.

8.4.2.9

R e f e r e n c e s

Balzer, R., "A 15 Y e a r Perspect ive on Automat ic Programming," IEEE Trans.
Software Eng., vol. SE-I I , pp. 1257-1268, November 1985.

Booth, C., Sof tware EnRineering with Ada, Menlo Park, CA: Benjamin/Cummings,
1983.

Brodie, M., J. Mylopoulos and J. Schmidt (eds.), O n Conceptual Modeling;
Perspec t ives f r o m Artificial Intelligence, Databases and Programming Languages,
New York: Springer-Verlag, 1984.

Goldsack, S. (ed.), Ada for Specification: Possibilities and Limitations, Cambridge,
England: Cambr idge University Press, 1985.

Pepper , P. (ed.), Program Transf orrnation and Programming Environments, Berlin:
Springer-Verlag, 1984.

Zave, P., "The Operat ional Versus t h e Conventional Approach to Sof tware
Development," Commun. ACM, vol. 27, pp.104-118, Feb. 1984.

B.4.2.10

